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Abstract

Purpose: Research findings are typically reported at the group level but applied to individuals.
However, an emerging issue in sports science concerns nonergodicity — whereby group-level
data cannot be generalized to individuals. The purpose of this study was to determine if the
relationship between daily carbohydrate intake and perceived recovery status displays
nonergodicity.

Methods: Fifty-five endurance athletes recorded daily measures of self-selected dietary intake,
training, sleep, and subjective wellbeing for 12 weeks. We constructed linear models to measure
the influence of daily carbohydrate intake on perceived recovery status while accounting for
training load, sleep duration, sleep quality, and muscle soreness. Using linear model coefficients
for carbohydrate intake we tested whether the distributions (mean and SD) differed at the group
and individual levels (indicating nonergodicity). Additionally, a decision tree was created to
explore factors that could provide an indication of an individual athlete’s relationship between
carbohydrate intake and perceived recovery status.

Results: Mean values were not different between group- and individual-level analyses, but SDs
at the individual level were ~2.5 times larger than at the group level, indicating nonergodicity.
Model coefficients for carbohydrate intake were negative for five participants, positive for four
participants, and non-significant for 31 participants. The Kappa value measuring accuracy of the
decision tree was 0.54, indicating moderate prediction accuracy.

Conclusion: For most individuals, carbohydrate intake did not influence recovery status.
However, the influence of dietary carbohydrate intake on daily recovery differs at the group and
individual level. Therefore, practical recommendations should be based on individual-level
analysis.
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1. Introduction

Sports nutrition guidelines recommend carbohydrate intake be modulated according to changes
in exercise volume (Thomas et al., 2016), with the intention of optimizing training adaptation
while ensuring adequate recovery. Under-fueling can cause low energy availability (Melin et al.,
2019), while over-fueling can cause weight gain and potentially attenuate desired training
adaptations (Bartlett et al., 2015). It is commonly reported that perceived ratings of wellness and
recovery are sensitive to fluctuations in training load (Gastin et al., 2013; Thorpe et al., 2016),
and sleep duration (Sawczuk et al., 2018). However, the influence of dietary intake on daily
recovery during endurance training is less understood. During short-term periods of intensified
endurance training, increasing energy and carbohydrate intake may attenuate symptoms of
overreaching (Achten et al., 2004; Halson et al., 2004; Killer et al., 2017; Sousa et al., 2010),
although it is unclear if this relationship between carbohydrate intake and daily recovery extends

over longer time periods and/or across a range of training volumes in a practical setting.

Studies in sports science are typically conducted and reported at the group level yet applied at
the individual level. It has been increasingly questioned whether group-level results can
generalize to individuals (Chrzanowski-Smith et al., 2020; Fisher et al., 2018; Hill et al., 2021;
Neumann et al., 2022), as group-level findings could conceal relevant inter-individual variability
in response to a training stimulus or intervention (Glazier & Mehdizadeh, 2019). This could lead
to sub-optimal training or nutrition prescriptions for an individual athlete. When the group-level
variability of data does not resemble the individual-level variability, or when individual-level

variability exhibits changing variance over time, the data is non-ergodic (Mangalam & Kelty-



Stephen, 2021; Molenaar & Campbell, 2009). Nonergodicity could lead studies to overestimate
the accuracy of aggregated statistical estimates and in turn, the generalizability of conclusions
between the group and individual. In light of this, nonergodicity has been suggested as a

disservice to human subjects research (Fisher et al., 2018).

As previously described by Molenaar and Campbell (2009) and Neumann et al. (2022), a Cattell
data box can be used to determine ergodicity of a given data set. This can be visualized as a 3-
dimensional box with time, measured variables, and individual subjects as the dimensions. For
group-level analysis of a variable of interest, a single time point is pooled across all subjects (e.g.,
all subjects on day 1), repeated for each additional time point, and summarized (e.g., mean,
standard deviation (SD), confidence intervals (Cl), etc.). For individual-level analysis the variable
is analyzed across all time points separately for each subject and then summarized. If the
structure of the group- and individual-level data differ (e.g., statistics of central tendencies,
variations, and/or correlations of time series data), the process is considered non-ergodic and
results obtained from standard analysis at the group level cannot be applied to the individual

(Molenaar & Campbell, 2009).

Nonergodicity is relevant in the context of nutrition and training, as evidence-based practitioners
and athletes often apply group-level research findings to the individual (Fullagar et al., 2019;
Thomas et al., 2016). Therefore, the purpose of this study was to examine the relationship
between daily carbohydrate intake and perceived recovery status and determine if group-level

statistics can generalize to individual athletes. To do so, 55 endurance athletes recorded daily



measures of self-selected nutrition intake, exercise training, sleep habits, and subjective
wellbeing for 12 weeks. We constructed linear models to measure the influence of daily
carbohydrate intake on perceived recovery status the following morning while accounting for
other factors such as training load, sleep, and muscle soreness. Using the model coefficient for
carbohydrate intake we tested whether the distributions (mean and SD) differed at the group
and individual levels. As an exploratory analysis, we also created a decision tree model to
understand general traits of athletes that would predict a positive, negative, or non-significant
model coefficient for carbohydrate intake. This could serve as the next step in understanding
individual-level differences, and provide a direction for coaches and practitioners to make better

decisions to support the individual athlete’s needs.

2. Methods

2.1 Study design

Self-selected nutrition intake, exercise training, sleep habits, and subjective wellbeing of
endurance athletes were monitored daily over a 12-week period. Throughout the study period,
participants were free to perform any type of exercise and consume any type of diet. Results
presented herein are from a wider study of endurance training and recovery. Data related to
carbohydrate periodization (Jeffrey A Rothschild et al., 2022) and machine learning predictions
(J.A. Rothschild et al., 2022) have been reported elsewhere. The study was open to male and

females aged 18 or older who train at least seven hours per week, were using a smartphone app



to track their dietary intake at least five days per week, captured HRV daily, and tracked sleep
using a wearable device. All study protocols and materials were approved by the Auckland
University of Technology Ethics Committee (22/7), and all participants provided informed

consent prior to starting the study.

2.2 Participants

Fifty-five endurance athletes (61.8% male, aged 42.6 + 9.1 years, training 11.6 * 3.9 hours per
week) took part in the study. The primary sports represented were triathlon (67.3%), running
(20.0%), cycling (10.9%), and rowing (1.8%). The self-reported competitive level included
professional (2.6%), elite non-professional (qualify and compete at the international level as an
age-group athlete, 34.6%), high-level amateur (qualify and compete at National Championship-
level events as an age-group athlete, 25.6%), and amateur (enter races but don't expect to win,

or train but do not compete, 37.2%) athletes.

2.3 Assessment of self-reported exercise

All exercise was recorded in Training Peaks software (TrainingPeaks, Louisville, CO, USA). Each
session was noted for modality (e.g., bike, run, swim), duration, and session rating of perceived
exertion (sRPE (Foster et al., 2021)) using the Borg CR100° scale, which offers additional precision

compared with the CR10 scale (Clemente et al., 2019). Participants were instructed to rate their



perceived effort for the whole training session within 1-h of exercise, although sRPE scores are

temporally robust from minutes to days following a bout of exercise (Foster et al., 2021).

2.4 Assessment of self-reported dietary intake

Details of dietary assessment have been described elsewhere (Jeffrey A Rothschild et al., 2022).
Briefly, participants were instructed to maintain their typical dietary habits and record all calorie-
containing food and drink consumed for the duration of the 12-week study, using the
MyFitnessPal application (www.myfitnesspal.com) (Evenepoel et al., 2020). Incomplete days of
tracking (2.2 + 4.6% of days per participant) were removed from the data, and analysis of the
calorie intake trend over time was performed for each participant as an additional check of
reporting compliance (Jeffrey A Rothschild et al., 2022). Four participants were excluded from
the analysis due to the detection of a downward trend in dietary reporting that could not be

explained by changes in training load or body weight.

2.5 Assessment of sleep and subjective wellbeing

Nightly sleep duration was recorded using wearable devices, which included Oura ring, Whoop
strap, Applewatch, Fitbit, and Garmin models as previously described (J.A. Rothschild et al.,
2022). These consumer-grade devices offer adequate accuracy in detecting sleep-wake times,
but not sleep staging (Chee et al., 2021; Chinoy et al., 2021; Miller et al., 2020; Roberts et al.,

2020; Zaffaroni et al., 2019). Each morning participants answered four questions related to



subjective wellbeing based on the recommendations of Hooper and Mackinnon (1995). The
perceived recovery status (PRS) scale (Laurent et al., 2011) was used to measure overall recovery
with athletes manually typing a number into Training Peaks software. The 100-point version of
the scale was used, which has been shown to provide more accurate measures of recovery than
the 10-point scale (Clemente et al., 2019). In addition, ratings of life stress (1-7), sleep quality (1-
7), and muscle soreness (1-10) were also recorded into the software each morning. Participants

were familiarized with all scales prior to starting the study.

2.6 Data preparation

Training load was calculated for each workout as the product of sRPE and duration of exercise in
minutes (Haddad et al., 2017), divided by 10 to account for the 100-point scale, and summed into
daily totals. External load metrics such as heart rate, power, or pace were not collected because
many athletes undertake activities that can’t be quantified on a common scale such as strength
training, yoga, or swimming without a HR monitor, and also because the sRPE is considered to be
a valid and reliable method for calculating training load across modalities (Haddad et al., 2017).
Seven-day rolling measures for training monotony (a measure of day-to-day variability in the
weekly training load, calculated as average daily load divided by the standard deviation) and
training strain (product of total weekly training load and training monotony) were calculated
(Haddad et al., 2017). A sleep index score was calculated as the product of sleep duration and
sleep quality (Sawczuk et al., 2021). Dietary macronutrient intake was converted to a relative

intake (g per kg body mass) to allow for appropriate comparison between athletes.



Participants were excluded from the analysis if they were training on average less than 6 h per
week (n = 8) or did not log at least 85% of the required data points (n = 3). Participants who did
not complete the full 12 weeks due to illness, injury, or drop-out but completed at least 6 weeks
of tracking were included in the analysis (n = 11). Among participants included in the analysis (n
=40), 2.5 + 1.7 % of data points were missing. Missing values were imputed at the individual level
using multiple linear regression and nearest neighbor algorithms for diet and training measures

and using median values for other variables (Kuhn & Johnson, 2013).

2.7 Analysis

Following the recommendations of previous studies (Fisher et al., 2018; Neumann et al., 2022),
we extracted a subset of data that was symmetrical (i.e., an equal number of participants and
observations per participant) to equalize statistical power for analysis at the group and individual
levels. Because we had 40 participants in the final analysis, 40 consecutive days were chosen
beginning with day 8 to allow for an accurate calculation of training strain (which reflects the
previous 7 days of training). Repeated measures correlation (Bakdash & Marusich, 2017) was
used at the group level to examine the bivariate relationship between the morning (AM) PRS
score and prior day carbohydrate intake. Pearson or Spearman correlations, depending on
normality of the data as determined by the Shapiro-Wilk test, were used to examine the bivariate

relationship between the AM PRS score and prior day carbohydrate intake for each individual.



Previous studies of ergodicity have focused on comparisons of univariate distributions and
bivariate correlations (Fisher et al., 2018; Neumann et al., 2022). However, the relationship
between diet and recovery is likely also dependent on other factors relating to training and sleep.
To account for this, linear regression models were constructed with AM PRS score specified as
the dependent variable, and carbohydrate intake (g/kg) from the previous day, training load from
the previous day, training strain (encompassing the previous 7 days), muscle soreness, and sleep
index specified as independent variables. These variables were chosen because they had the
highest importance scores in our predictive modeling study (J.A. Rothschild et al., 2022). The
model coefficient for carbohydrate intake was the primary variable of interest. For group level
analysis, models were made for all 40 athletes together on day 1 and repeated for each of the 40
days with the results summarized across days (as mean, SD, and 95% Cls). For individual-level
analysis, a separate model was created for each athlete, and the results were then summarized.
However, data at the individual level are a time series, which refers to a sequence of data points
at equally spaced points in time and ordered chronologically (Schaffer et al., 2021). Time series
data cannot be analyzed with common techniques such as linear modeling if the day-to-day
observations are correlated with observations at previous time points (i.e., auto-correlated) and
are not independent of each other, as key assumptions of linear regression are violated (James
et al., 2021). Autoregressive Integrated Moving Average (ARIMA) models are commonly used in
time series analysis to account for these issues (Schaffer et al., 2021). Therefore, for individual-
level analyses we constructed ARIMA models using the Hyndman-Khandakar algorithm for

automatic ARIMA modelling (Hyndman & Khandakar, 2008). To determine statistical significance,



95% Cls for means and SDs of the unstandardized regression coefficients were calculated, and
values were considered significantly different if the 95% Cls did not overlap. Ergodicity can be
confirmed if the mean and SD at the group and individual levels were not significantly different
(Molenaar & Campbell, 2009). R-squared (R?) was calculated as an overall measure of model

accuracy.

To explore characteristics which might inform the individual responses to carbohydrate intake, a
decision tree model was created to predict the classification of statistical significance for the
model coefficient of prior day carbohydrate intake from the individual ARIMA models (non-
significant, significantly positive, or significantly negative). The coefficients were organized into
these three categories with practical application in mind. That is, coaches or nutritionists might
benefit more from knowing if/how an individual responds to carbohydrate in this context, rather

than getting a predicted model coefficient for the individual athlete.

Variables used in the decision tree model were age, training age, competitive level, primary sport,
sex, BMI, percentage of training days performing fasted-state training, and average values of
daily kcal intake (kcal/kg), daily carbohydrate, fat, and protein intake (g/kg), carbohydrate
monotony (mean daily intake/SD), weekly training volume (h), training monotony, and training
strain. All available data points were used for the decision tree models (n = 3,285, 82.1 + 9.6 days

per participant), rather than the 40-d subset used to compare group vs. individual responses to



obtain the most accurate picture of each individual’s characteristics. Modeling was performed in
R using the Tidymodels ecosystem (Kuhn & Wickham, 2020). Hyperparameters were tuned using
100 bootstrap resamples and model accuracy was established using 500 bootstrap resamples.
Class imbalances were handled by up-sampling prior to tuning. Cohen’s Kappa was used as the
primary accuracy measure due to the imbalanced, multi-class nature of the outcome variable.
Kappa accounts for the accuracy that would be generated simply by chance, producing values
between -1 and 1. We interpret these values using the guidelines of Landis and Koch (1977), with
values of 0—-0.20 considered slight, 0.21—-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substantial,
and 0.81-1 as almost perfect. In addition, we report positive predictive value and negative
predictive value (Altman & Bland, 1994). All analyses were carried out with R version 4.0.3 (The
R foundation for Statistical Computing, Vienna, Austria). Descriptive statistics are provided as

mean + SD.

3. Results

During the 40-d period selected for the primary analysis, average participant training volume was
11.7 + 3.3 h per week. Mean daily dietary intake was 38.8 * 8.7 kcal/kg, 3.9 + 1.5 g/kg
carbohydrate, 1.9 + 0.4 g/kg protein, and 1.7 * 0.6 g/kg fat, and average sleep duration was 7.5
1 0.7 hours per night. Bivariate repeated-measures correlation at the group level revealed a

significant negative relationship between AM PRS and carbohydrate ingestion the prior day (r = -



0.09, 95% Cl -0.14 t0 -0.04, p < 0.001), but this relationship varied considerably among individuals

(Figure 1).

After accounting for prior day training load, 7-day training strain, muscle soreness, and sleep
index via linear modeling, model coefficients for carbohydrate intake were negative for five
participants (13%), positive for four participants (10%), and non-significant for 31 participants
(78%, Figure 2). Mean values for model coefficients were similar between the group and
individual (evidenced by overlapping Cls), whereas SDs were different, (i.e., non-overlapping Cls)
indicating nonergodicity (Figure 3). Nonergodicity was also observed in the overall model
accuracy. Mean R-squared values of the linear models were 0.32 (95% CI 0.29, 0.36), and 0.40
(95% CI 0.34, 0.46), for the group and individual models, respectively, and SD values were 0.11

(95% C10.09, 0.14) and 0.18 (95% C1 0.15, 0.23) for the group and individual models, respectively.

A decision tree was created to explore potential factors that could provide coaches or
practitioners with an indication of an athlete’s relationship between carbohydrate intake and
perceived recovery status (Figure 4). The Kappa value was 0.54, indicating a moderate level of
agreement. Positive predictive value was 0.50, and negative predictive value was 0.86. A

confusion matrix of actual and predicted classes is shown in Figure 5.
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Figure 1. Bivariate correlations between AM perceived recovery status (PRS) and carbohydrate
ingestion the prior day (g/kg). Values given in (A) used repeated-measures correlation analysis.
Panel (B) shows Pearson (circle) or Spearman (triangle) correlation values and 95% confidence
intervals for each participant, colored based on statistical significance (p < 0.05). Panel (C) shows
example scatterplots for the participants with the three highest and three lowest correlation
values. Numbers at the top of each panel in (C) relate to the participant ID shown in (B). The light
grey points in (C) depict all points for the 6 participants shown in (C), with each individual’s points
shown in color (red for negative correlation values and green for positive).
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Figure 2. Individual participant model coefficients with 95% Confidence Intervals for the effect of
prior day carbohydrate (CHO) intake (g/kg) on AM Perceived Recovery Status (PRS) score after
accounting for prior day training load, 7-d training strain, muscle soreness, sleep index (product
of sleep duration and sleep quality), using Autoregressive Integrated Moving Average (ARIMA)
modeling. This can be interpreted as a change of AM PRS in the amount shown on the x-axis for
every 1 g/kg increase in daily CHO intake, after holding everything else constant. Green indicates
statistically significant positive values, red indicates statistically significant negative values, and
grey indicates non-significant values (p > 0.05).
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Figure 3. Density plots of the model coefficients for the effect of prior day carbohydrate (CHO)

intake (g/kg) on AM Perceived Recovery Status (PRS) score after accounting for prior day training

load, 7-d training strain, muscle soreness, and sleep index (product of sleep duration and sleep

quality). Inset table shows mean, SD, and 95% confidence intervals for model coefficients for

carbohydrate intake from group and individual level modeling.
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Perceived Recovery Status. Each node indicates the predicted class (negative, non-significant, or
positive model coefficients). At each level, following the node to the left corresponds to yes, and
following the node to the right corresponds to no.
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Figure 5. Confusion matrix of actual and predicted classes for the decision tree model predicting
the response to prior day carbohydrate ingestion on AM Perceived Recovery Status. Values
shown in the dark green boxes indicate the number of correct predictions for each class.

4. Discussion

The aim of this study was to examine the relationship between daily carbohydrate intake and
perceived recovery status and determine if group-level statistics can be generalized to individual
athletes. The main outcomes are 1) daily carbohydrate intake does not influence perceived
recovery status the following morning for most athletes, after accounting for other influential
variables such as training load, muscle soreness, and sleep, 2) for those that are affected the
influence can be positive or negative, 3) the data are non-ergodic, meaning group-level findings
cannot be generalized to the individual, and 4) we build upon previous work using bivariate
correlations to include linear model coefficients and offer a method for understanding the

individual responses through a decision tree algorithm.



We observed a large discrepancy between inter- and intra-individual variation (i.e.,
nonergodicity), as SDs at the individual level were ~2.5 times larger than at the group level. This
means there would be a difference when computing statistics by first averaging the data before
the calculations versus first calculating the statistics for each individual before averaging these
results (Hill et al., 2021). Furthermore, mean values may be misleading when determining the
influence of carbohydrate intake on AM PRS. At the group level, a traditional interpretation
would suggest carbohydrate has minimal influence on AM PRS after accounting for the other
variables. Although this would be true for most athletes (~78% of our participants), model
coefficients were positive for 10% and negative for 13% of our participants (Figure 2). This means
the individual, rather than the group, should be placed at the level of analysis to avoid wrong

conclusions (Hill et al., 2021).

Previous studies have used bivariate correlations to explore ergodicity (Fisher et al., 2018;
Neumann et al., 2022). In this context, bivariate correlations could be misleading because
athletes often increase carbohydrate intake on days with higher training loads (Jeffrey A
Rothschild et al., 2022). Because of the multifactorial nature of day-to-day recovery, we created
linear models to account for these additional factors while focusing the analysis on daily
carbohydrate intake. Subjective muscle soreness and sleep index were included because they are
two of the most important factors predicting AM PRS scores, as reported by us (x) and others
(Gastin et al., 2013; Sawczuk et al., 2021; Thorpe et al., 2016). Training strain was included in the

model to account for potential residual fatigue from the previous seven days of training. Training



strain (the product of training load and training monotony) is high when high training loads are
combined with low variability of load, and low when athletes complete either low training loads
or have regular variation in training (Haddad et al., 2017). Together, these variables account for
a substantial amount of the variance in PRS scores and allow a more focused look at the influence

of carbohydrate intake.

The beliefs and practices surrounding nutrition and training vary widely among athletes
(Rothschild et al., 2020; Rothschild et al., 2021). Although it could be tempting to try and find
unifying answers to some of the contrasting beliefs held by athletes (e.g., the positive or negative
influence of fasted-state training or increasing carbohydrate intake), the current study
underscores the idea that what’s best for one athlete may not be best for another. It is also
noteworthy that athletes in this study were undertaking self-selected training programs, and
results cannot be generalized to short-term periods of intensified training, where increasing
energy and/or carbohydrate intake has been shown to attenuate symptoms of overreaching

(Achten et al., 2004; Halson et al., 2004; Killer et al., 2017; Sousa et al., 2010).

As a way of translating the interindividual variability from a statistical concept to practical
application, a decision tree model was created. Variables such as age, sex, BMI, competitive level,
training volume, and habitual dietary patterns were included to better understand what traits or
gualities might be related to a certain response to carbohydrate intake. Although interpretation
of the decision tree is challenged by the small number of athletes presenting significant model

coefficients for carbohydrate intake and the inability of the model to accurately predict positive



coefficients (Figure 5), it can serve as a starting point for understanding how an athlete might be
expected to respond to carbohydrate intake. The most important variables were carbohydrate
monotony, followed by average daily carbohydrate and fat intake. Among athletes with low
carbohydrate monotony scores (i.e., larger daily variations in carbohydrate intake), those with a
higher average daily carbohydrate intake were likely to have a negative response to carbohydrate
intake whereas those with a lower daily carbohydrate intake were more likely to have a non-
significant effect of carbohydrate intake on AM PRS score (Figure 4). Athletes with a higher daily
fat intake were also less likely to be influenced by changes in daily carbohydrate intake (Figure
4). The model displayed moderate accuracy (Kappa value of 0.54), although the ability of the
model to learn from the data was challenged by the small and imbalanced data set. As shown in
Figure 5, negative and non-significant outcomes were able to be predicted very well, but the
model did not accurately predict any positive responders. Nevertheless, we feel this approach
can be adopted by others who wish to better understand individual responses to a given

intervention or stimulus.

There are several limitations to this study, primarily related to the use of self-report measures.
Data integrity was checked based on the number of missing values, and by looking for trends in
dietary reporting that could not be explained by changes in training load or body weight.
However, it is possible that participants did not always enter data as accurately as possible. There
is also the risk of bias in reporting if an athlete is aware that a coach or a researcher will be seeing

their data, answering based on what they think is desirable. In addition, the limited number of



data points, particularly with unbalanced classes, made training and interpreting the decision

tree model challenging.

5. Conclusion

Our findings suggest the influence of dietary carbohydrate intake on daily recovery differs at the
group and individual level. Therefore, inferences may not be generalized from the group to the
individual, and practical recommendations should be based on individual analysis. Furthermore,
at the group level, the previous day’s carbohydrate intake did not influence the perceived
recovery status of athlete training ~12 h per week. This research also adds to the literature
around ergodicity in sports science, an emerging concept that should be routinely considered as
part of the statistical analysis process. Future research in athletes should focus on individual
responses in order to prescribe the correct nutrition, and likely training, to maximize each

athlete’s performance and training.
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