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Abstract 

Background Effect sizes are commonly used to assess the effectiveness of interventions in 

strength and conditioning (S&C). The purposes of this large meta-analysis were to investigate the 

properties of two different effect size statistics and synthesize the large amount of data available 

in the form of informative Bayesian priors to quantify effectiveness of future S&C interventions.    

Methods An online database and hand search of published and unpublished S&C intervention 

studies from the 1950’s onwards was conducted. Pre- and post-intervention data comprising 

means and standard deviations were extracted from outcomes categorized as: maximum strength, 

jump performance or sprint performance. Standardised mean difference (SMDpre) and percentage 

improvement (%Improve) obtained from the response ratio were calculated and modelled with 4-

level Bayesian hierarchical meta-analysis models. Results were also used to create normally 

distributed priors which were incorporated into an accessible tool for assessing the effectiveness 

of future S&C interventions through the use of Bayesian updating. 

Results Data from 628 studies comprising 5468 effect sizes were included in the analyses. Large 

differences were identified in the effect size distributions for maximum strength (pooled means: 

SMDpre =0.68 [95%CrI: 0.63 to 0.73]; %Improve = 14.3% [95%CrI: 13.3 to 15.4]) and sprint 

performance (pooled means: SMDpre =0.46 [95%CrI: 0.43 to 0.50]; %Improve = 6.8% [95%CrI: 

6.3 to 7.3]). These differences were also reflected in development of Bayesian priors with the 

lowest means and largest relative variance obtained for sprint performance reflecting lower 

improvements in general, but also greater relative dispersion of results. Analysis of the tails of the 

effect size distributions indicated consistent overestimations of SMDpre values, likely caused by 

underestimated standard deviations.     

Conclusions Future evaluations of S&C interventions are likely to be better performed and 

contextualised using Bayesian approaches featuring the information and informative priors 

developed in this meta-analysis. To facilitate an uptake of Bayesian methods within S&C, an easily 
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accessible tool employing intuitive Bayesian updating was created. It is recommended that 

researchers and practitioners use the tool alongside the S&C specific threshold values, instead of 

continual isolated effect size calculations and Cohen’s generic values when evaluating the 

effectiveness of future S&C interventions. Researchers may choose to evaluate interventions using 

both SMDpre and percent improvement statistics given their different strengths and limitations.  

 

Key Words: S&C; evaluation; effect size; Bayesian; prior; percent change; percent improvement 
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1.0 Introduction 

Evidence synthesis approaches including the use of meta-analysis have proliferated in parallel with 

the increased volume of strength and conditioning (S&C) research. Meta-analyses in S&C 

frequently seek to combine relatively homogeneous studies employing similar designs, each of 

which address a specific research question. Examples include meta-analyses investigating 

repetition duration (1), weekly set volume (2,3) or periodized versus non-periodized training (4) to 

increase physical qualities such as strength, power or muscular hypertrophy. Where less 

homogenous studies are included, meta-analyses frequently incorporate more sophisticated 

models to account for potential confounding of study-level moderators (3). However, criticisms 

of meta-analyses and their ability to synthesise data from heterogenous studies have been made, 

with concerns primarily related to their ability to generate relevant practical applications (5). In 

contrast to narrow evidence synthesis approaches, large-scale meta-analyses have also been 

conducted in S&C to describe general trends and identify the most influential factors determining 

intervention effectiveness. Seminal work by Rhea and colleagues (6,7) focussed on strength 

training and demonstrated large differences in the expected response between untrained and highly 

trained participants. More recently, Swinton et al (8) showed large differences in the magnitude of 

change across an intervention depending on the outcome type (e.g. strength, speed, power), the 

intervention type (e.g. resistance, plyometric, sprint), intervention duration, training status, gender, 

and the degree of specificity between training and outcomes.   

 

Of central importance to both the rigour and interpretation of meta-analyses is the choice of effect 

size. Most previous meta-analyses conducted in S&C have used the pre-standardised mean 

difference (SMDpre), dividing the mean change by the pre-intervention standard deviation. One of 

the primary reasons for the widespread use of the SMDpre includes the existence of common 

threshold values to apply qualitative labels describing intervention effectiveness as “small”, 
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“medium”, or “large”. However, threshold values have generally used Cohen’s initial suggestions 

(9) which were determined arbitrarily with the behavioural and social sciences in mind, thereby 

presenting a limitation. To address this, Swinton et al (8) used contemporary meta-analysis 

methods to develop S&C specific SMDpre threshold values with suggested ranges to account for 

moderating factors such as intervention duration, training status, gender, and the degree of 

specificity between training and outcome. Additional reasons for the widespread use of the SMDpre 

includes several conceptual advantages (10) enabling description of how future individuals 

performing the intervention should be expected to change relative to the population form which 

the sample was drawn. Assuming the outcome of interest follows a normal distribution in the 

population, an intervention with SMDpre = 0.5 indicates an average improvement of a half standard 

deviation. Therefore, an individual starting at the 25th or 50th percentile, should be expected to 

move to the 43rd or 69th percentile, respectively. Whilst some researchers have argued that this 

perspective is not the most relevant when considering response to training interventions (11), it 

has also been argued that the most important limitations of the SMDpre reflects concerns related 

to reliability and sampling (12). Most research conducted in S&C is nomothetic where interest lies 

beyond the specific sample investigated and the aim is to generalise findings to the larger 

population (13). To obtain sample statistics that provide valid statistical inference, the SMDpre 

requires both the mean change and pre-intervention standard deviation to be representative of the 

population. This can be achieved on average through random sampling of participants from the 

target population (10). However, random sampling is rarely performed in S&C, and instead 

convenience samples are routinely obtained from a single sports team or small selection of teams. 

In contrast to the homogeneity of many samples, it can be argued that populations of interest 

within S&C are generally heterogeneous, with focus predominantly on the training status (e.g. 

untrained, recreationally trained and highly trained) and type of sporting activity performed (e.g. 

strength sports, field sports, collision sports, endurance sports). Given diffuse populations and 

frequent use of convenience samples representing restrictive sub-sections, it should be expected 
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that pre-intervention sample standard deviations will in general underestimate this population 

parameter, and thereby lead to an overestimation of the population effect size. Where very 

restrictive and overly homogenous samples are recruited, extremely large and physiologically 

implausible SMDpre may be obtained. Findings supporting this position were reported by Swinton 

et al (8) where over 100 outliers were identified, including many SMDpre values greater than 10. 

Whilst the use of convenience samples may also lead to biased means that either over- or 

underestimate population values, this may not present as large a limitation. If there is no or a weak 

relationship between pre intervention values and the change score, the sample mean difference 

may still provide an appropriate estimate of the mean population change. Additionally, across the 

entire research base it may be expected that studies will include non-random samples with both 

negatively and positively biased means. In contrast, for SMDpre we should expect convenience and 

thereby frequent restricted samples to overestimate the population value.  

 

An alternative effect size focused on sample means that can provide simple and intuitive 

interpretations of the magnitude of an intervention effect is the ratio of means (14). Like the 

SMDpre, the ratio of means (post-intervention mean divided by pre-intervention mean) is 

dimensionless enabling synthesis of outcomes across different units and scales. It has been argued 

that the ratio of means, which can also be interpreted in terms of percentage improvement (e.g. 

1.50 is equivalent to a 50% increase from baseline and 0.8 is equivalent to a 20% decrease) is easier 

to interpret than the SMDpre making it a more applicable summary statistic (15). When working 

with the ratio of means, the natural logarithm is generally used for statistical analyses before back 

transforming to interpret results. The natural logarithm of the ratio of means is commonly referred 

to as the response ratio (RR) and in some disciplines such as ecology is the most popular effect 

size metric for both individual studies and meta-analyses (16). The RR like the SMDpre has received 

substantive statistical investigation with adjustments identified to account for issues such as small-
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sample bias and accurate sampling variance to improve properties for inclusion in meta-analyses 

(17,18). The RR has received limited use in previous meta-analyses conducted in sport science (19). 

However, it has been recommended that interventions to improve physical performance should 

be meta-analysed in percent units to better communicate results (20,21). As a result, several 

previous meta-analyses have converted mean difference effect sizes to percentage change and 

obtained standard errors from inferential statistics to conduct meta-analytic models (21-23). 

Additionally, a previous meta-analysis investigating the dose-response relationship between 

training volume and increases in muscle mass (3) performed a traditional analysis with SMDpre but 

reported equivalent percentage gain values to better communicate results. Given the clear interest 

in interpreting results in a scale other than standard deviation units and the limitations that are 

likely to exist with estimates of population standard deviations, percentage improvement calculated 

from the RR with its established statistical properties represents an appropriate alternative for 

meta-analyses in S&C.  

 

Large meta-analyses also have the potential to assist researchers and practitioners quantifying the 

effectiveness of future interventions. Almost all statistical analyses conducted in S&C research 

employ a frequentist framework where effect sizes are calculated anew without including prior 

information regarding likely values based on previous research. In the minority of cases, where 

uncertainty in effect sizes are quantified, confidence intervals are used which frequently suffer 

from misinterpretation and non-intuitive interpretations (24). Additionally, due to the small 

sample-sizes generally included in S&C interventions (8), uncertainty in effect sizes calculated 

under a frequentist framework are likely to lack precision. Instead, a Bayesian framework enables 

individuals to include prior information and express the uncertainty of effect sizes in an intuitive 

probabilistic manner (e.g. using a posterior distribution), borrowing strength from previous 

research to increase precision. Common critiques of Bayesian approaches include the complexity 
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that may exist with the analysis process and challenges in creating suitable informative priors (25). 

However, meta-analysis models estimate a set of intervention effects rather than a single estimate 

and can thus be used to develop priors which combine with new data using simple calculations to 

obtain a normally distributed posterior describing the most likely population effect size (26). 

Therefore, the purpose of this study was to build upon the meta-analysis of Swinton et al (8) and 

compare the SMDpre and percentage improvement effect sizes to quantify intervention 

effectiveness in S&C. A focus of the analysis was placed on the influence of the standard deviation 

in determining SMDpre values. In addition, meta-analyses were used to generate informative priors 

and threshold values to calculate Bayesian posteriors and effectively interpret future S&C 

interventions.   
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2.0 Methods 

2.1 Search strategy 

Studies obtained were part of a search for a previous meta-analysis (8) comprising published and 

unpublished research in the English language that included S&C interventions conducted prior to 

January 2018. The search was performed using Embase, Medline, Web of Science, Sport Discus 

and Google Scholar. Hand searching of relevant journals including Medicine and Science in Sports 

and Exercise, the Journal of Strength and Conditioning Research, and Research Quarterly was also 

conducted. Database search terms were included to identify various training modes, longitudinal 

interventions, and a range of outcome measures relevant to S&C.  

 

2.2 Inclusion criteria 

Inclusion criteria comprised: 1) any S&C intervention-based study ≥ 4 weeks; 2) healthy trained 

or untrained participants with a mean age between 14 and 60; 3) intervention group with a 

minimum of 4 participants; 4) pre and post intervention means and standard deviations collected 

from an outcome measure identified as maximum strength, vertical jump or sprint performance. 

Studies comprising interventions that were predominantly aerobic-based or rehabilitation focused 

were excluded.  

 

2.3 Study selection and data extraction 

Following deduplication, a three-level selection process comprising title, then abstract then full-

text screening was completed. Studies were screened and selected for inclusion independently by 

AM with discussions with PS and KB where required. A standardised extraction codebook was 

developed using Microsoft Excel, with data extracted and coded independently by four researchers 

(AM, JP, AH, LG) in duplicate with AM completing extraction for all studies to provide 
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consistency. Maximum strength outcomes included a measure of maximum force production 

where time was not limited (e.g. 1-6 repetition maximum, isometric mid-thigh pull, peak torque). 

Jump performance outcomes included jump tests where a measure of vertical jump height or 

distance was collected. Sprint performance outcomes included measurement of the time to 

complete a specified linear distance or the velocity achieved. To investigate the variation in baseline 

standard deviation across studies, a sub-selection of the most popular tests in each outcome 

category were identified enabling these outcomes to be analysed in the same absolute scale. These 

included 1RM tests in the squat and bench press (measured in kg), vertical squat and 

countermovement jumps (measured in cm), and time to sprint 10 m, 20 m, 30 m, 40 m and 40 yds 

(measured in seconds). Training status was categorized using definitions previously set by Rhea 

(30) based on S&C training experience: untrained (<1 year); recreationally trained (1-5 years); 

highly trained (>5 years). Where pre-post intervention data were not presented in text but in 

figures, data were extracted using PlotDigitizer 2.6.8 Windows. 

 

2.4 Statistical analysis 

Effect sizes and their sampling variance were calculated using group mean and standard deviation 

values calculated pre-intervention and at any subsequent time-point. The SMDpre and RR effect 

sizes and their within-study variances 𝜎𝑒
2 were calculated using the following formulae: 

SMDpre = (1 −
3

4𝑛 − 5
) (

�̅�𝑃𝑜𝑠𝑡 − �̅�𝑃𝑟𝑒

𝑆𝑑𝑃𝑟𝑒
) 

where 𝑛 is the number of participants in the intervention and the first term comprises a small-

study bias term 𝑐(𝑛 − 1).  

 𝜎𝑒
2(SMDpre) = (𝑐(𝑛 − 1)2) (

𝑛−1

𝑛(𝑛−3)
) (2(1 − 𝑟) + 𝑛SMDpre

2 ) − SMDpre
2        

where 𝑟 is the correlation between repeated measures. 
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𝑅𝑅 = ln (
�̅�𝑃𝑜𝑠𝑡

�̅�𝑃𝑟𝑒
) +

1

2
(

𝑆𝑑𝑃𝑜𝑠𝑡
2

𝑛�̅�𝑃𝑜𝑠𝑡
2 −

𝑆𝑑𝑃𝑟𝑒
2

𝑛�̅�𝑃𝑟𝑒
2 ) 

𝜎𝑒
2(𝑅𝑅) =

𝑆𝑑𝑃𝑜𝑠𝑡
2

𝑛�̅�𝑃𝑜𝑠𝑡
2 +

𝑆𝑑𝑃𝑟𝑒
2

𝑛�̅�𝑃𝑟𝑒
2 −

2𝑟𝑆𝑑𝑃𝑜𝑠𝑡𝑆𝑑𝑃𝑟𝑒

𝑛�̅�𝑃𝑜𝑠𝑡�̅�𝑃𝑟𝑒
   

Percentage improvement (e.g. positive value represents improvement and negative value 

represents a decline in performance) was then calculated using the following formulae depending 

on whether an increase or decrease in the outcome represented an improvement in performance.  

%Improve =+
−

{100(exp(𝑅𝑅) − 1), 100(1 − exp(𝑅𝑅))} 

 

Relationships between baseline mean and baseline standard deviation were investigated using 

log-log linear regression for outcomes measured on different scales, and standard linear 

regression with sub-analyses of the most common tests measured on the same scale. Prior to 

conducting full meta-analysis models, the tails of the empirical distributions were investigated by 

focusing on the smallest 1, 2 and 5% (0.005-, 0.0125-, and 0.025-quantile) and largest 1, 2 and 

5% (0.975-, 0.9875, and 0.995-quantile) values for both the SMDpre and percentage improvement 

effect sizes. Additionally, the ratio of the baseline mean and the baseline standard deviation was 

also calculated at the tails of the empirical distribution for the sub-selected most common tests.  

 

All meta-analyses were conducted using a nested four-level Bayesian mixed effects meta-analytic 

model (8). The series of nestings included the individual study (level 4), the outcome (level 3), the 

measurement occasion (level 2) and the sampling variance (level 1). To account for uncertainty in 

𝜎𝑒
2 due to non-reporting of 𝑟, the values were allowed to vary and were estimated by including an 

informative Gaussian prior approximating correlation values centred on 0.7 and ranging from 0.5 

to 0.9. Variance partition coefficients (VPCs) were used to quantify the relative variance explained 
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across the different levels of the hierarchy, with addition of VPCs used to estimate the expected 

(population) correlation between two randomly chosen elements within the same nesting structure 

(27). The parameters obtained from the meta-analysis models were then used to calculate small, 

medium and large threshold values for each of the outcome types. This was achieved by generating 

posterior predictions from each meta-analysis model and calculating the 0.25-, 0.5-, and 0.75-

quantiles (8). Weakly informative Student-t prior and half-t priors with 3 degrees of freedom and 

scale parameter equal to 2.5 were used for intercept and variance parameters (28). Outlier values 

were identified by adjusting the empirical distribution by a Tukey 𝑔-and-ℎ distribution and 

obtaining the 0.0035- and 0.9965-quantiles, with values beyond these points removed prior to 

further analysis (29). Meta-analyses were performed using the R wrapper package brms interfaced 

with Stan to perform sampling (30). Convergence of parameter estimates were obtained for all 

models with Gelman-Rubin R-hat values below 1.1 (31). 

 

To build prior distributions for each outcome type, the posterior mean and standard deviation 

(calculated as the square root of the sum of variance components across levels 2 to 4) obtained 

from the meta-analysis models along with their credible intervals (mean: 0.025 to 0.975-quantile; 

standard deviation: 0.125 to 0.875-quantile) were collected. An expanded grid optimisation search 

was then used to select a mean and standard deviation value to represent the normally distributed 

prior (𝜃~Normal(𝜃0, 𝜎0
2)) across the credible intervals identified. For each point on the grid, the 

mean and standard deviation value was used to calculate the quantile value of the small, medium 

and large thresholds previously identified. A least squares approach was then used with the cost 

function equal to the squared sum of the differences between the quantile values collected and the 

corresponding 0.25, 0.5 and 0.75 reference values. Finally, a supplementary file was created so that 

the prior distributions calculated could be combined with data from future S&C interventions to 

produce posterior distributions and probabilistic information on whether the intervention exceeds 
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the context specific small, medium and large thresholds. With new data, the Bayesian updating is 

achieved by calculating the effect size 𝐸𝑆new and standard error 𝜎𝑒𝑛𝑒𝑤
. The standard error is then 

transformed into a standard deviation of the participant level outcome 𝜎 using 

𝜎enew
2 =

𝜎2

𝑛𝑛𝑒𝑤
 

where 𝑛𝑛𝑒𝑤 is the number of participants in the intervention of interest. The prior variance 𝜎0
2 is 

then re-expressed so that the amount of information contained in the prior distribution is 

equivalent to an intervention with 𝑛0 participants where  

𝜎0
2 =

𝜎2

𝑛0
. 

The Bayesian updating for the posterior distribution of the effect size 𝜃 is then achieved by using 

the following formula (26) 

𝜃|𝐸𝑆𝑛𝑒𝑤 ~Normal (
𝑛0𝜃0 + 𝑛𝑛𝑒𝑤𝐸𝑆𝑛𝑒𝑤

𝑛0 + 𝑛𝑛𝑒𝑤
,

𝜎2

𝑛0 + 𝑛𝑛𝑒𝑤
 ). 
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3.0 Results 

The search strategy employed for the original meta-analysis (Swinton et al. 2021) returned 110,662 

records which reduced to 2108 studies following deduplication and title screening. This reduced 

to 973, and 706 studies following abstract and full-text screening, respectively. A total of 628 

studies featured the required data to be included in the present meta-analysis with most studies 

comprised untrained participants (n=374, 59.6%), followed by recreationally trained (n=212, 

33.8%) then highly trained (n=42, 6.7%). A total of 2632 maximum strength effect sizes were 

extracted from 421 studies, followed by 1574 jump performance effect sizes from 382 studies, and 

1262 sprint performance effect sizes from 257 studies. When restricting outcomes to sub-analyses 

of the most common tests from each category, a total of 957 vertical jump performance (unloaded 

squat and counter-movement) effect sizes were extracted from 339 studies, followed by 607 sprint 

performance (10 m, 20 m, 30 m, 40 m and 40 yrd sprint times) effect sizes from 180 studies, 344 

1RM squat effect sizes from 135 studies and 318 1RM bench press effect sizes from 110 studies.  

 

Analyses of the relationships between baseline standard deviation and baseline mean showed 

functional differences in form across tests measured on different scales (e.g. vertical jump cm and 

peak force N), and differences in relative magnitudes (e.g. ratio values) across different outcome 

domains. Power relationships were identified when including tests across different scales as 

identified by a linear log-log plot for the complete data set (Figure 1A) and within each domain 

(not shown). In contrast, standard linear relationships appeared suitable for the sub-analyses of 

jump performance measured in centimetres, sprint times measured in seconds, and 1RM squat and 

bench press tests measured in kilograms (Figures 1B-1D). Simple linear regression conducted on 

the sub-analyses of the most common tests identified large variations in standard deviations when 

regressed on the baseline mean, with most values (e.g. 4 times the standard error) falling within a 
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range of 10.3 cm for vertical jump performance, 0.45 s for sprint performance, and 24.1 and 34.8 

kg for the 1RM bench press and squat, respectively.  

 

Figure 1: Relationships between baseline means and standard deviation. 1A (top-left): Log-log 

transformations across the whole data set. 1B (top-right): Jump performance measured in 

centimetres. 1C (bottom-left): Sprint performance measured in seconds. 1D (bottom-right): 1RM 

squat and bench press performance measured in kg.  

 

 
 

  

Standard error values for linear regression performed on jump, sprint, bench press and squat data were: 

2.6 cm, 0.11 s, 6.0 kg and 8.7 kg, respectively.  
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Direct calculation of the mean and standard deviation of effect size statistics from the complete 

empirical data returned SMDpre values of 0.79±1.6 and percentage improvement values of 

10.9±14.4%. The same calculations applied to each of the outcome domains returned SMDpre 

values of 0.95±1.7, 0.62±1.6 and 0.63±1.6; and percentage improvement values of 16.0±17.3%, 

7.6±7.8% and 2.4±3.4% for maximum strength, jump and sprint performance, respectively. Prior 

to applying the meta-analytic model, the tails of the empirical values were investigated (Table 1) 

and demonstrated long right tails with relatively similar SMDpre values obtained across the different 

domains (i.e., similar large physiologically implausible values). In contrast, substantive differences 

were obtained for percentage improvement with more extreme large values obtained for maximum 

strength, followed by jump then sprint performance. As a final check of the tails of the distribution, 

the ratios of the baseline standard deviation relative to the mean were calculated for sub-analyses 

of the most common tests (Table 2). Similar patterns were obtained across all tests with relatively 

small changes in the ratio for the left tail as compared with ratios from values at the centre. In 

contrast, large changes were obtained in the right tail with substantively and progressively lower 

ratios progressing further into the tail. The largest changes were obtained for the squat where the 

baseline standard deviation was estimated to equal approximately 23% of the baseline mean for 

effect sizes close to the median, which reduced to 14, 8 and then 3% for effect sizes close to the 

0.975-, 0.9875- and 0.995-quantiles, respectively.    
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Table 1: Direct calculation of largest and smallest 1, 2 and 5% of effect sizes across outcome 

types. 

  0.005-

Quantile 

0.0125-

Quantile 

0.025-

Quantile 

0.5-

Quantile 

0.975-

Quantile 

0.9875-

Quantile 

0.995-

Quantile 

Outcome Statistic        

All 
SMDpre -0.84 -0.50 -0.29 0.52 3.3 5.3 9.1 

%Improve -14.3% -6.6% -3.6% 7.1% 46.8% 61.3% 93.4% 

         

Maximum 

Strength 

SMDpre -0.84 -0.42 -0.23 0.62 4.0 5.9 8.6 

%Improve -17.0% -9.1% -4.9% 12.5% 59.7% 84.0% 113% 

         

Jump 

performance 

SMDpre -0.74 -0.38 -0.25 0.47 2.5 3.3 7.8 

%Improve -11.1% -5.8% -3.4% 6.3% 27.6% 34.7% 42.1% 

         

Sprint 

Performance 

SMDpre -0.88 -0.68 -0.44 0.36 2.6 5.5 11.7 

%Improve -6.9% -3.9% -2.6% 2.0% 10.8% 12.4% 16.0% 

 

Table 2: Direct calculation of the percentage of the baseline standard deviation relative to the 

mean in the tails of empirical distributions (largest and smallest 1, 2 and 5% of effect sizes). 

 0.005-

Quantile 

0.0125-

Quantile 

0.025-

Quantile 

0.5-

Quantile 

0.975-

Quantile 

0.9875-

Quantile 

0.995-

Quantile 

Outcome        

Jump 

Performance 

9.5% 12.1% 14.1% 15.3% 9.5% 5.6% 0.4% 

        

Sprint 

Performance 

2.7% 3.9% 4.4% 5.6% 2.8% 0.9% 0.5% 

        

1RM Squat 17.9% 21.1% 23.0% 23.4% 14.0% 7.8% 2.5% 

        

        

1RM Bench 

press 

14.8% 15.3% 16.1% 16.1% 9.8% 6.5% 3.8% 
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Prior to meta-analysis, a total of 106 outliers were removed with lower bound SMDpre and 

percentage improvement thresholds of -0.91 and -11.4%, and upper bound SMDpre and percentage 

improvement thresholds of 6.8 and 93.4%. Based on shrinkage from application of the meta-

analysis model, and borrowing of information across studies and outcomes, the pooled mean 

estimate obtained across all domains was reduced to SMDpre0.5=0.56 [95%CrI: 0.53 to 0.59] and 

%Improve0.5=9.3 [95%CrI: 8.7 to 9.9%]. Estimates of the total standard deviation (calculated from 

summation of levels 2, 3 and 4) were 𝜎(SMDpre)0.5=0.42 [85%CrI: 0.40 to 0.45] and 

𝜎(%Improve)0.5=8.5% [85%CrI: 8.0 to 09.2]. Effect size statistics; small, medium and large 

thresholds; and variance parameters for maximum strength, jump and sprint performance are 

presented in table 3. The results showed large differences across outcome types with the greatest 

effect sizes obtained for maximum strength and substantively smaller effect sizes obtained for 

sprint performance. Mean and standard deviation values for future prior distributions are 

presented in table 4. The supplementary file includes prior distributions for each of the domains 

and includes calculations presented in the statistical analysis section to generate posterior 

distribution parameters and probability of exceeding small, medium and large thresholds when a 

user enters either raw data (individual pre- and post-intervention) or summary data (sample size, 

pre- and post-intervention mean and standard deviation).   
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Table 3: Meta-analysis results for all pooled outcomes and domain specific outcomes.   

  Mean 
 

[95% CrI] 

Small 
(0.25-quantile) 

[95% CrI] 

Medium 
(0.5-quantile) 

[95% CrI] 

Large 
(0.75-

quantile) 
[95% CrI] 

Study Level 
VPC 

[75% CrI] 

Outcome 
Level VPC 
[75% CrI] 

Measurement 
Occasion VPC 

[75% CrI] 

Outcome Statistic        

All 
SMDpre 

0.56  
[0.53 to 0.59] 

0.18  
[0.17 to 0.20] 

0.49 
[0.47 to 0.51] 

0.84 
[0.82 to 0.86] 

0.27  
[0.26 to 0.28] 

0.14 
[0.11 to 0.17] 

0.01  
[0.00 to 0.03] 

%Improve 
9.3 

[8.7 to 9.9] 
2.6 

[2.3 to 2.8] 
8.1 

[7.7 to 8.4] 
15.6 

[15.3 to 16.1] 
0.30 

[0.29 to 0.31] 
0.29 

[0.24 to 0.34] 
0.01  

[0.00 to 0.06] 
         

Maximum 
Strength 

SMDpre 
0.68 

[0.63 to 0.73] 
0.25 

[0.22 to 0.27] 
0.60 

[0.57 to 0.62] 
0.99 

[0.96 to 1.0] 
0.28  

[0.27 to 0.29] 
0.10 

[0.07 to 0.13] 
0.02 

[0.00 to 0.04] 

%Improve 
14.3 

[13.3 to 15.4] 
6.0 

[5.4 to 6.5] 
13.6 

[13.0 to 14.3] 
22.7 

[22.0 to 23.4] 
0.30 

[0.29 to 0.30] 
0.21 

[0.15 to 0.26] 
0.06 

[0.00 to 0.16] 
         

Jump 
Performance 

SMDpre 
0.46 

[0.43 to 0.50] 
0.18 

[0.15 to 0.20] 
0.44 

[0.42 to 0.47] 
0.73 

[0.70 to 0.76] 
0.26 

[0.25 to 0.28] 
0.01 

[0.00 to 0.03] 
0.00 

[0.00 to 0.02] 

%Improve 
6.8 

[6.3 to 7.3] 
2.8 

[2.4 to 3.2] 
6.7 

[6.3 to 7.1] 
11.0 

[10.6 to 11.5] 
0.28 

[0.27 to 0.29] 
0.06 

[0.03 to 0.09] 
0.03  

[0.00 to 0.11] 
         

Sprint 
Performance  

SMDpre 
0.41 

[0.36 to 0.46] 
0.08 

[0.05 to 0.12] 
0.36 

[0.33 to 0.39] 
0.66 

[0.62 to 0.71] 
0.28  

[0.27 to 0.29] 
0.00 

[0.00 to 0.02] 
0.01  

[0.00 to 0.02] 

%Improve 
2.5 

[2.2 to 2.8] 
0.5 

[0.3 to 0.7] 
2.1 

[2.0 to 2.3] 
3.9 

[3.7 to 4.2] 
0.31  

[0.30 to 0.31] 
0.06 

[0.03 to 0.09] 
0.04  

[0.00 to 0.09] 

CrI: Credible interval. VPC: Variance partition coefficients. SMDpre: Standardised mean difference using the baseline standard deviation. 
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Table 4: Mean and standard deviations of future prior distributions for SMDpre and RR effect 

sizes statistics across outcome types. 

  Prior Mean Prior Standard 
distribution 

Outcome Statistic   

All 
SMDpre 0.53 0.45 

RR 0.083 0.077 

    

Maximum 

Strength 

SMDpre 
0.63 0.54 

RR 0.130 0.108 

    

Jump 

performance 

SMDpre 0.45 0.36 

RR 0.066 0.050 

    

Sprint 

Performance 

SMDpre 0.37 0.43 

RR 0.022 0.026 
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4.0 Discussion 

The purpose of this meta-analysis was to compare the SMDpre and percentage improvement effect 

sizes, and their ability to quantify effectiveness of S&C interventions. In addition, the meta-analysis 

sought to develop prior distributions for the effect sizes, so that Bayesian methods could be used 

to assess the effectiveness of future S&C interventions in an informative and intuitive manner. In 

general, the analyses showed similar findings for SMDpre and percentage improvement, with the 

greatest effect sizes obtained for maximum strength outcomes, and a substantive decrease for 

sprint performance. Some differences were identified in the composition of the meta-analysis 

models including greater relative variances at the outcome level for percentage improvement 

compared with SMDpre. For both effect sizes the positive tails of the empirical distribution 

exhibited extremely large values. These large values only occurred for maximum strength outcomes 

in percentage improvement (~60 to 110% improvement) but were consistently large and 

physiologically implausible for SMDpre across all outcomes (~4 to 12). Extremely large SMDpre 

values were likely influenced by underestimated standard deviation values with analyses 

demonstrating substantively lower standard deviations relative to baseline means in the right but 

not left tails. Development of the Bayesian prior distributions resulted in relatively large spreads 

with standard deviation values close to the mean, and for sprint performance standard deviations 

were greater in value, which was consistent with the finding that a substantive proportion of the 

distribution included effect sizes close to zero.  

 

Whilst SMDpre values can provide an informative means of interpreting the effectiveness of an 

S&C interpretation, they may not be readily interpretable for practitioners. In contrast, percentage 

improvement, which is obtained with a simple transform of the relative ratio statistic provides one 

of the most intuitive means of interpreting the magnitude of an effect and are consistent with how 

many conceptualise and discuss intervention effects (32). For example, in the present analysis the 
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greatest effect sizes were obtained for maximum strength outcomes with the SMDpre small, 

medium and large thresholds equal to 0.18 [95%CrI: 0.17 to 0.20], 0.49 [95%CrI: 0.47 to 0.51] and 

0.84 [95%CrI: 0.82 to 0.86], respectively. In contrast, expressed as a percentage improvement the 

thresholds were equal to 6.0% [95%CrI: 5.4 to 6.5], 13.6% [95%CrI: 13.0 to 14.3] and 22.7% [22.0 

to 23.4] which are immediately more interpretable. However, the greatest conceptual difference 

between the two effect sizes is evident when comparing thresholds between maximum strength 

and sprint performance. For sprint performance the small, medium and large SMDpre thresholds 

decrease to 0.08 [95%CrI: 0.05 to 0.12], 0.36 [0.33 to 0.39] and 0.66 [0.62 to 0.71]. These results 

show that a substantive proportion (~15 to 20%) of the effect size distribution are close to or 

below zero, whereas the large sprint performance threshold is between the medium and large 

maximum strength thresholds. In contrast, the percentage improvement thresholds for sprint 

performance were equal to 0.5% [95%CrI: 0.3 to 0.7], 2.1% [95%CrI: 2.0 to 2.3] and 3.9% [3.7 to 

4.2], such that all thresholds were below even the small maximum strength threshold. These 

observations reflect differences in relationships between the means and standard deviations for 

each outcome and demonstrate the conceptual difference between effect sizes describing 

expectations of how participants will change their relative position within a population compared 

to the magnitude of the change relative to the starting value.  

 

The potential for restricted sampling of a population to bias standardized effect sizes such as the 

SMDpre was highlighted by Baguley (12). If the sample is a truncated sample (missing one or both 

tails), then the standard deviation is likely to be underestimated such that the SMDpre will be 

positively biased. This scenario is most likely to occur in S&C research where random sampling is 

uncommon and often convenience samples are used, including recruitment from a single team 

where participants may be relatively homogenous given similar training experiences. In contrast, 

sampling only from the tails is likely to overestimate the standard deviation (12) and thereby 
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negatively bias the SMDpre. In S&C, this situation may occur in studies recruiting both males and 

females where the outcome variable has a large sex stratification. The results from the present 

analysis highlight the likely role that recruitment practices have played in calculated standard 

deviations and thereby estimated SMDpre values. To assess the range in values, the present analysis 

investigated the relationship between baseline mean and standard deviations. Clear power 

relationships were identified by linear log-log plots when analysing the whole data set (Figure 1A) 

or outcomes on different scales within a specific domain. However, to more intuitively quantify 

ranges in standard deviations, analyses were made regressing standard deviations on means 

measured in the most common tests recorded on the same absolute scales. Assuming linear 

relationships (Figure 1B-1D), the standard error from the regression analysis was used such that 

given a normal distribution, four times the standard error provided an estimate (~95% coverage) 

of the range. The results showed a range of 10.3 cm for vertical jump performance, 0.45 s for 

sprint performance, and 24.1 and 34.8 kg for the 1RM bench press and squat, respectively. To 

illustrate the effect that these ranges can have on SMDpre values, if we consider a participant group 

of 𝑛=8, with a baseline mean of 100 kg, the regression analysis suggests a typical baseline standard 

deviation of 19.5 kg. If the mean improvement was equal to 10 kg, this would produce a SMDpre 

value of 0.46 (which based on the results of this review would be considered a small to medium 

effect). However, based on actual differences in the population variance, or more likely 

inappropriate sampling, the results of the present analysis indicate that standard deviations of 

19.5±(34.8/2) may be reported. Based on these differences, the SMDpre value could decrease to 

0.24 (considered a small effect size) or increase to 4.2 which is extremely large, and very unlikely 

to occur over a single training intervention. However, analysis of the positive tails of the 

distributions consistently demonstrated SMDpre values greater than 4 for the top 2% of results 

(Table 1), and ratios of standard deviations and means were much smaller in the positive tails 

compared to other parts of the distribution (Table 2). Whilst large improvements are possible, 

especially with untrained participants (ref), the analyses presented here suggest that extremely large 
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SMDpre values are likely to be inflated by inappropriate sampling. In addition, it is possible that 

values not in the tails but more central in the distribution reflect smaller population effect sizes 

that were inflated due to the same process.  

 

One approach to obtain better estimates of effect sizes is to use Bayesian approaches. One of the 

primary challenges and biggest criticisms of Bayesian methods has been the selection of 

appropriate priors (25,33). Where substantive and relevant external information is present, 

attempts should be made to incorporate this within an informative prior (33). One of the most 

effective sources of information to build priors to better assess the effectiveness of future 

interventions includes meta-analyses such as that presented here (26). An additional challenge in 

the effective use and uptake of Bayesian methods is a lack of formal training and familiarity with 

the approaches (34). In the present study attempts have been made to address both challenges by 

firstly, creating priors that are based on a large volume of research covering the outcome domains 

generally featured in S&C research; and secondly, employing a relatively simple Bayesian updating 

method which can be understood intuitively and facilitated in software that is familiar with both 

researchers and practitioners (35). The method adopted expresses both the prior and posterior 

distribution of the effect size as normal distributions which are familiar and simple to assess overall 

suitability by examining stated probabilities. For example, based on the meta-analysis results 

obtained here, an SMDpre
 prior with mean 0.68 and standard deviation of 0.54 was developed for 

maximum strength outcomes. This asserts that the prior probability of obtaining an SMDpre
 value 

greater than 0 is 𝑝=0.896, the probability of obtaining an SMDpre
 value between 0 and 0.5 is 

𝑝=0.265, and the probability of obtaining an SMDpre
 value greater than 1 is  𝑝=0.277. A researcher 

and practitioner can decide to alter the mean and standard deviation values if they believe that the 

probabilities investigated do not match up to their prior beliefs, but provide a useful initial anchor 

as they were designed to fit an extensive amount of data collected from S&C interventions. 
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Similarly, the updating process used to combine the prior information with data collected and 

generate a posterior distribution is also easily interpreted. Firstly, the method (26) updates the 

posterior mean as a weighted combination of the prior mean and the effect size calculated directly 

from the intervention. The weights are determined by the uncertainty in the estimate from the 

data, and where for example a small number of participants are investigated, the standard error 

will be large and therefore greater weight placed on the prior mean. The exact weights used are 

determined by matching the uncertainty in the new data and the prior, and translating the 

information contained in the prior to a single trial that can then be updated with the new data. To 

demonstrate how some of the potential issues discussed previously with regards to poor estimates 

of the standard deviation can be addressed, the example outlined above is continued. If we assume 

a correlation between the pre- and post-intervention scores of 0.7 (a requirement to calculate 

uncertainty in the estimate), then combining the extremely large SMDpre
 value of 4.2 with the small 

sample size of n = 8, generates a standard error of 1.41. Based on a frequentist approach, a 95% 

confidence interval for the effect size would equal 4.2±1.96×1.41 giving a range of 1.4 to 7.0. 

However, given the small sample size and the large standard error, when updated in a Bayesian 

framework using the methods presented here and the equations in the statistical analysis section, 

the posterior mean and standard deviation are shrunk to 1.1 and 0.50, respectively. The effect size 

is still considered large but is now more plausible and can be interpreted probabilistically given the 

normal distribution and posterior parameters estimated (e.g. probability of at least a small effect: 

𝑝=0.953; probability of at least a medium effect: 𝑝=0.840; and probability of at least a large effect: 

𝑝=0.577). Note, if the sample size was much larger, say 𝑛=100, then the directly calculated effect 

size increases to 4.7 (due to a reduction in the bias offset) and the posterior mean is only shrunk 

to 3.5, as there is less uncertainty in the original estimate. This example also highlights the challenge 

in obtaining accurate estimates of population parameters if sampling is limited.  
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5.0 Conclusion 

To assist practitioners in selecting and developing interventions using evidence-based practices, it 

is important that processes and tools are available to compare and appropriately interpret 

differences in results disseminated in research. Currently, the use of effect size statistics provides 

the most practical method of ranking interventions and determining which are most likely to 

provide a basis for the greatest improvements within a given population. There are, however, 

multiple effect size statistics that can be used, each with their own strengths and weaknesses. In 

S&C, the most established effect size statistic is the SMDpre
 value which can be informative, but 

can provide biased results, particularly overestimations when calculated on a restricted sample of 

the population. An alternative effect size statistic that may fit more intuitively with practitioners’ 

perceptions of training interventions and expectations of changes in outcome variables is percent 

improvement. This effect size statistic can be calculated using the response ratio which is popular 

in many other disciplines and whose properties are well understood (17,18). However, the response 

ratio has multiple limitations including its requirement to work with logarithms and challenges 

presented when used with outcomes that change sign (e.g. positive to negative), can equal zero, or 

are measured as proportions (32). Regardless of the effect size statistic used, when evaluating 

previous research in S&C, clear patterns emerge and large differences in distributions are evident, 

particularly between maximum strength and sprint performance. Knowledge that different 

outcome types can generate large differences in effect size distributions has several important 

consequences. Firstly, interpretations on the success of an intervention can be greatly influenced. 

For example, using previous non-S&C specific thresholds, researchers and practitioners may 

interpret several sprint performance interventions as being unsuitable when a more complete 

understanding highlights that these improvements may be relatively large and therefore the 

intervention appropriate to use with a given population. Secondly, knowledge of effect size 

distributions has important implications for setting sample size requirements for future research 

studies. Effect size thresholds are commonly used for power calculations using frequentist 
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methods and suggest that smaller sample sizes may be required for interventions aimed at 

developing maximum strength compared with interventions aimed at developing sprint 

performance. Similarly, sample size approaches using Bayesian methods can also use the prior 

distributions presented here in their calculations (26).  

 

Given the large volume of S&C research and the pace at which it is accelerating, there are clear 

advantages to incorporating this information within future research to make better estimates, 

particularly where small sample sizes are common and effect sizes may be low (33). Bayesian 

methods are well suited to this process, and it is likely that as more disciplines and research in 

general take advantage of the benefits associated with Bayesian frameworks and criticisms of null 

hypothesis significance testing continues to grow (36), increased uptake will occur. To facilitate an 

increased use of Bayesian methods processes are required to address two of the main challenges 

which include development of appropriate priors and accessible tools and procedures that are 

intuitive and can be carried out ideally without need of complex software. The present study has 

attempted to address these challenges by developing informative priors that can be checked 

intuitively for their predictions. In addition, the creation of a tool in MS Excel that can perform 

the required calculations and generate simple, and context specific output is likely to be of benefit 

to both researchers and practitioners.  
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